The ultimate pendulum clock, indeed the ultimate mechanical clock of any kind, was invented by a British engineer, William Shortt....
GMAT Reading Comprehension : (RC) Questions
The ultimate pendulum clock, indeed the ultimate mechanical clock of any kind, was invented by a British engineer, William Shortt. The first was installed in the Royal Observatory in Edinburgh in 1921. The Shortt clock had two pendulums, primary and secondary. The primary pendulum swung freely in a vacuum chamber. Its only job was to synchronize the swing of the secondary pendulum, which was housed in a neighboring cabinet and drove the time-indicating mechanism. Every 30 seconds the secondary pendulum sent an electrical signal to give a nudge to the primary pendulum. In return, via an elaborate electromechanical linkage, the primary pendulum ensured that the secondary pendulum never got out of step.
Shortt clocks were standard provision in astronomical observatories of the 1920s and 1930s, and are credited with keeping time to better than two milliseconds in a day. Many were on record as losing or gaining no more than one second in a year—a stability of one part in 30 million. The first indications of seasonal variations in the earth's rotation were gleaned by the use of Shortt clocks.
In 1984 Pierre Boucheron carried out a study of a Shortt clock which had survived in the basement of the United States Naval Observatory since 1932. After replacing the electromechanical linkage with modern optical sensing equipment, he measured the Shortt clock's rate against the observatory's atomic clocks for a month. He found that it was stable to 200 microseconds a day over this period, equivalent to two to three parts in a billion. What is more, the data also revealed that the clock was responding to the slight tidal distortion of the earth due to the gravitational pull of the moon and the sun.
In addition to causing the familiar ocean tides, both the sun and the moon raise tides in the solid body of the earth. The effect is to raise and lower the surface of the earth by about 30 centimeters. Since the acceleration due to gravity depends on distance from the center of the earth, this slight tidal movement affects the period of swing of a pendulum. In each case the cycle of the tides caused the clock to gain or lose up to 140 microseconds.
The passage most strongly suggests that its author would agree with which of the following statements about clocks?